Data Conversion and Lab (17.368)

Fall 2013

Lecture Outline

Class # 07

October 17, 2013

Dohn Bowden

Today's Lecture Outline

- Administrative
- Detailed Technical Discussions

- Digital to Analog Conversion

- Lab
 - Lab #3
- Homework

Course Admin

Syllabus Review

	Week	Date	Topics	Lab	Lab Report Due
		09/05/13	Introduction/Basic Data Conversion, Course Overview, Op Amps in Data Conversion		
Ī	2	09/12/13	Op Amp Lab	1	
Ī	-3	09/19/13	Sample and Hold Lecture and Lab	2	
	4	09/26/13	A/D Conversion Fundamentals and Lab	3	1
	5	10/03/13	A/D Conversion Lab Continuation	3 con't	
	6	10/10/13	Examination 1		
	7	10/17/13	D/A Conversion Fundamentals and Lab	3	
1	8	10/24/13	D/A Conversion Lab Continuation	4	2
ſ	9	10/31/13	Microcontroller and Sensors	4 con't	3
	10	11/07/13	Microcontroller and Sensor Lab	5	
Ī	11	11/14/13	V/F and F/V Conversion Lecture	5 con't	4
	12	11/21/13	Examination 2	Project	5
ſ	X	11/28/13	No Class – Thanksgiving		
Ī	13	12/05/13	Work on Course Project	Project	
	14	12/12/13	Final Exam/Course Project Brief and Demonstration	Demo	

Exam #1

- Exams have been graded ...
 - I will pass them back when you start the lab portion of the class tonight

Detailed Technical Discussion

References ...

References

- Lecture material is covered in the text as follows ...
 - Data Conversion Handbook
 - On line version (PDF)
 - 3.1 3.35
 - Textbook (Hard Copy)
 - Pages 147 173

DAC Overview ...

Digital to Analog Converters

- Devices with digital input and analog output
- Abbreviations ...
 - D/A converters ~~~ Digital-to-Analog (D/A) Converters
 - DAC ~~~ Digital-to-Analog Converters
- DACs are used to convert digital values in the form of a binary number into proportional analog voltages or currents

DAC Lecture Overview

- We shall consider the various architectures of DACs
- And we shall also consider the forms which the reference may take

DACs

- Although DACs are available in IC packages ...
 - We shall analyze them in a discrete form to better describe and understand how they function

DAC Example ...

- A voice signal can be digitized for storage, processing, or transmission and then ...
 - Converted back to an analog (audio) signal to drive a speaker

DAC Reference Signal

- The analog output depends on the presence of an analog input known as the reference (V $_{\rm REF}$)
- The accuracy of the reference input (V_{REF}) is almost always the limiting factor on the absolute accuracy of a DAC

Basic DAC with External Reference

Digital to Analog Conversion – Output

• The output of a DAC may be a voltage or a current

Basic – DAC Structures

- In the ADC lecture ... we saw that a comparator was a ...
 - ... Simple 1-Bit Analog to Digital Converter
- The equivalent DAC (a ... 1-Bit DAC) is a *changeover switch*
 - Switching an output between ...
 - » A reference ... and ... Ground
 - ... or ...
 - » Between equal positive and negative reference voltages

Single-Pole, Double Throw, SPDT

1-Bit Digital to Analog Converter

- Such a simple device is a component of many more complex DAC structures
- We shall go into more detail when we discuss more complex structures

The – Kelvin Divider (String DAC)

The – Kelvin Divider ... or String DAC

- The simplest DAC structure of all, after the changeover switch
- An N-bit version of this DAC ... consists of
 - 2^N equal resistors in series ... and ...
 - 2^{N} switches
- The output is taken by closing just one of the switches
- The origins of this DAC date back to Lord Kelvin in the mid-1800s, and it was first implemented using resistors and relays, and later with vacuum tubes in the 1920s
- The major drawback of the String DAC is the large number of resistors and switches required for high resolution

Voltage-Mode-Binary-Weighted Resistor DAC

Voltage-Mode-Binary-Weighted Resistor DAC

- Simplest textbook example of a DAC
- It's not inherently monotonic
 - A Monotonic DAC has an output that changes in the same direction (or remains constant) for each increase of the input code
- Hard to manufacture successfully at high resolutions
- The output impedance changes with the input code

4-Bit Binary-Weighted DAC

25

- A 4-Bit Binary-Weighted DAC is shown on the previous slide
- It consists of ...
 - A summing amplifier
 - Feedback resistor R_F
 - Four summing resistors (one for each input bit)
 - Four switches that are used to provide a 4-bit binary input
 - An open switch represents a '0' state
 - A closed switch represents a '1' state

- The switches correspond to the same ...
 - 8-4-2-1 weighted values of a 4-bit binary number
 - » 2³ 2² 2¹ 2⁰

- The resistors are also selected with the same proportionality rule
- Since R4 is connected at the MSB input line ...
 - It will have the smallest value ...
 - So as to allow the most current going through it
 - » Hence contributing to the biggest output swing

- The next most significant bit contributes half that of the MSB, therefore ...
 - The resistor value R_3 is selected to be double of R_4
- With the same reasoning R_2 is to be double of R_3 ... and ...
- R₁ is selected to be double of R₂

• Therefore ...

$$R_1 = 2R_2 = 4R_3 = 8R_4$$

- Selecting $R_4 = 12.5 \text{ k}$
- We obtain ...

$R_3 = 25 \text{ k}$	which is	2* R ₄
$R_2 = 50 \text{ k}$	which is	2* R ₃
$R_1 = 100 \text{ k}$	which is	2* R ₂

4-Bit Binary-Weighted DAC

Circuit Repeated for some additional analysis ...

In this summing amplifier circuit we have ...

$$V_{OUT} = -(I_{R_F} * R_F)$$

Where

$$I_{R_F} = I_{R1} + I_{R2} + I_{R3} + I_{R4}$$

And

$$I_{R1} = \frac{V_1}{R_1}$$
 $I_{R2} = \frac{V_2}{R_2}$ $I_{R3} = \frac{V_3}{R_3}$ $I_{R4} = \frac{V_4}{R_4}$

Therefore ...

$$V_{OUT} = -\left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \frac{V_4}{R_4}\right) * R_F$$

• Obviously, if one switch is open, the corresponding voltage is 0v

• And ... if one switch is closed, the corresponding voltage is 5v

• Assuming all switches are open ...

$$V_1 = V_2 = V_3 = V_4 = 0...volts$$

• therefore
$$V_{OUT} = 0$$
 volts

• Assuming all switches are closed ...

$$V_1 = V_2 = V_3 = V_4 = 5...volts$$

- What feedback resistor do we need if we want the maximum output voltage to be (-15 volts)?
- From the prior equation ... the value of the feedback resistor is

$$-15 = -\left(\frac{5}{100} + \frac{5}{50} + \frac{5}{25} + \frac{5}{12.5}\right) * 10^{-3} * R_F \qquad 15 = \left(\frac{5 + 10 + 20 + 40}{100}\right) * 10^{-3} * R_F$$
$$15 = \left(\frac{75}{100}\right) * 10^{-3} * R_F \qquad R_F = 20k$$

• Having all the resistor values of the circuit, we now can look at an example ...

Example ... What will be the output voltage for a 1001 input, using the circuit below?

See next slide ...

36

Example ... What will be the output voltage for a 1001 input, using the circuit on the prior slide?

• We would have ...

$$I_{R4} = \frac{V_4}{R_4} = \frac{5}{12.5k} = 0.4mA \qquad I_{R3} = I_{R2} = 0 \qquad I_{R1} = \frac{V_1}{R_1} = \frac{5}{100K} = 0.05mA$$

Hence ...

$$I_{R_F} = I_{R1} + I_{R2} + I_{R3} + I_{R4} = 0.05 + 0 + 0 + 0.4 = 0.45 mA$$

Therefore ...

$$V_{OUT} = -(I_{R_F} * R_F) = -(0.45 * 10^{-3}) * (20 * 10^{-3}) = -9 volts$$
$$V_{OUT} = -9 volts$$

4-Bit Input Binary-Weighted D/A Converter Results

All 16 possible input combinations with the corresponding output voltage together with a plot of the analog output vs. the digital input

The actual output voltages are **<u>negative</u>**. The graph above actually has the magnitude (absolute value) of the output voltage

R-2R DACs

- The next DAC architecture that we shall discuss is the R-2R
- A problem with the Binary-Weighted DAC is that it requires a large number of different value resistors ...
 - Some of which become very large

Problem with the Binary-Weighted DAC ...

- Consider the case of a 12-bit Binary-Weighted DAC ...
- You would need 12 different resistor values
- If you were to select a 12.5K for the resistor the MSB branch
- The resistor for the LSB branch would be 25.6M!

$$2^{1}=12.5K$$
 $2^{2}=25K$ $2^{3}=50K$ $2^{4}=100K$ $2^{5}=200K$ $2^{6}=400K$ $2^{7}=800K$ $2^{8}=1.6M$ $2^{9}=3.2M$ $2^{10}=6.4M$ $2^{11}=12.8M$ $2^{12}=25.6M$

Problem with the Binary-Weighted DAC ...

• To avoid the problem of needing a large number of different value of resistors when using the Binary-Weighted DAC (some of which become very large) ...

- Which is mainly a manufacturing cost-prohibitive issue ...

• We can use the R-2R Ladder D/A converter ...

R-2R Ladder D/A Converter

43

- The circuit gets its name from the fact that it uses two resistor values ...
- One being double (2R) ... of the other (R)
- The R-2R ladder resistor network is the same as the Binary-Weighted circuit ...
 - It weighs the input so that each input has twice the value of the previous one

- For example ...
 - The current supplied to the feedback resistor from the resistive network when Input B (SW3) is activated ...
 - Should be double that supplied when Input A (SW4) is activated

- Since the R-2R ladder is a linear circuit ...
 - We can apply the principle of superposition to calculate V_{OUT}
 - Superposition Theorem ...
 - The total current in any part of a linear circuit equals the algebraic sum of the currents produced by each source separately
- The expected output voltage is calculated by summing the effect of all bits connected to $V_{\text{REF}}.$

• The output voltage is given by the following equation:

$$V_{OUT} = -\frac{R_f}{R} \left(\frac{D}{2} + \frac{C}{4} + \frac{B}{8} + \frac{A}{16} \right) * V_{REF}$$

- Where D, C, B, A corresponds to the inputs D, C, B, A
 - The values of D, C, B, A being either ...
 - » '1' (switch to 5v)

or

» '0' (switch to ground)

- Assume $R_f = R = 10K$... eliminates amplifying by 2 if $R_f = 20K$
- The minimum output voltage is 0 volts when Inputs A, B, C, D are all '0' (switch grounded)
- And the maximum output voltage, when the inputs A, B, C, D are at '1' is

$$V_{OUT_{(MAX)}} = -\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}\right) * V_{REF} = -\frac{15}{16}V_{REF} = -\frac{15}{16} * 5 = -4.6875 Volts$$

- You would expect V_{OUT} to be able to reach V_{REF} , but it doesn't
 - Reason: 0v counts as a "digital step", otherwise we would have an extra step above the maximum number of steps allowed by the number of bits

DAC0808 an 8-Bit DAC

FIGURE 11.16 The DAC0808 and the 741 op-amp connected to form a DAC.

DAC0808 an 8-Bit DAC

- Some DACs contain an internal op-amp but the DAC0808 doesn't
- The internal components supply proportional currents to its output lead (pin #4)
- We connect the DAC0808 to a 741 op-amp
- The max output current flow allowed out of pin #4 is 2 mA

AN EXAMPLE ...

- We want ...
 - An analog output ranging from 0V to 10V
 - Limit the output current to 2 mA max
 - What feedback resistor do we need?
- An input of 00000000 ... we would have 0 volts and 0 mA at the input
- And for an input of 11111111 we want 10 volts and 2 mA output

$$V_{OUT} = -I_F * R_F$$

• Therefore ...

$$R_F = \frac{V_{OUT}}{-I_F} = \frac{10}{.002} = 5K$$

- If we needed a different output voltage range we would adjust $\rm R_{\rm F}$ accordingly to limit the output to 2 mA

Other DAC Architectures

- You now have the basic idea as to how DACs function
- The text contains a number of other architectures ...
 - We are not going to go into them ...
- The principles are similar to what we have just went over ...
- You may want to take some time and explore these architectures
 - At least know what they are if you need to use them

DAC Specifications ...

Performance Specifications

- Resolution
- Accuracy
- Linearity
- Monotonicity
- Settling Time

 $\ensuremath{\mathsf{*}}$ We will not discuss these at this time \ldots

Lab #3 and #4 ...

Lab #3– Overview

• To construct and operate an A/D Converter using the ADC804

Lab #4 – Overview

- Will construct and operate a binary-weighted DAC
- Will construct and operate a Digital to Analog Converters
- Test the ADC and DAC With DC Input
- Test the ADC and DAC With A Sinusoidal Input
- ~ ~ OPTIONAL ~ ~ Integrated Digital to Analog Converter Signal Generator

Next Class

Next Class Topics

• Lab only

Homework

Homework

- 1. Lab Reports Lab report #2 is due 10/24/13
 - Enough time so you can review your graded Lab Report #1 and make any changes for Lab #2

Time to start the lab...

Lab

• Lab #3

Questions?